7 resultados para Biomechanics

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

ARAUJO, Márcio V. ; ALSINA, Pablo J. ; MEDEIROS, Adelardo A. D. ; PEREIRA, Jonathan P.P. ; DOMINGOS, Elber C. ; ARAÚJO, Fábio M.U. ; SILVA, Jáder S. . Development of an Active Orthosis Prototype for Lower Limbs. In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING, 20., 2009, Gramado, RS. Proceedings… Gramado, RS: [s. n.], 2009

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study proposes to develop an equipment that attends the demands of tetraplegic people due to cerebral palsy and that promotes an adequate caregivers postural biomechanics during the shower activity of daily living. First, a bibliographic review was performed to define the terms refering to cerebral palsy, activity of daily living (specifically shower), and assistive technology, besides listing the wheelchairs made on the mainly national assistive technology companies. Therefore, this is a descriptive-exploratory study based on a literature review and on a based-field exploration research. On the field research a survey was adopted as a methodological procedure as it is related to a direct investigation related to a phenomenon, on the case, represented by the current shower situation of the people investigated in this study. Data were collected with the application of a form to the caregivers and consumers of the medical-therapeutic treatment and place used by the participants. Such form, which was made up of open and close questions, tried to identify, besides the personal data of evaluated users and consumers, the characteristics of the current shower activity, such as the place where it takes place in the house, the used equipmentS, in the case there is any, and how often it occurs. The form also was used to identify the caregivers and consumers desires and perceptions in relation to the present characteristics of the new dispositive besides the users and consumers anthropometric data. The evaluation of the results obtained through the form, together with the practice and clinical experience of the researchers and engineers involved in this study, made it possible to develop and make up a real shower chair prototype with the specific adjusts destined to adequate the equipment to be used according to the needs of each user and consumer

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents the development of a prototype of an intelligent active orthosis for lower limbs whit an electronic embedded system. The proposed orthosis is an orthopedical device with the main objective of providing walking capacity to people with partial or total loss of lower limbs movements. In order to design the kinematics, dynamics and the mechanical characteristics of the prototype, the biomechanics of the human body was analized. The orthosis was projected to reproduce some of the movements of the human gait as walking in straight forward, sit down, get up, arise and go down steps. The joints of the orthosis are controlled by DC motors equipped with mechanical reductions, whose purpose is to reduce rotational speed and increase the torque, thus generating smooth movements. The electronic embedded system is composed of two motor controller boards with two channels that communicate with a embedded PC, position sensors and limit switches. The gait movements of the orthosis will be controlled by high level commands from a human-machine interface. The embedded electronic system interprets the high level commands, generates the angular references for the joints of the orthosis, controls and drives the actuators in order to execute the desired movements of the user

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The manufacture of prostheses for lower limb amputees (transfemural and transtibial) requires the preparation of a cartridge with appropriate and custom fit to the profile of each patient. The traditional process to the patients, mainly in public hospitals in Brazil, begins with the completion of a form where types of equipment, plugins, measures, levels of amputation etc. are identified. Currently, such work is carried out manually using a common metric tape and caliper of wood to take the measures of the stump, featuring a very rudimentary, and with a high degree of uncertainty geometry of the final product. To address this problem, it was necessary to act in two simultaneously and correlated directions. Originally, it was developed an integrated tool for viewing 3D CAD for transfemoral types of prostheses and transtibial called OrtoCAD I. At the same time, it was necessary to design and build a reader Mechanical equipment (sort of three-dimensional scanner simplified) able to obtain, automatically and with accuracy, the geometric information of either of the stump or the healthy leg. The methodology includes the application of concepts of reverse engineering to computationally generate the representation of the stump and/or the reverse image of the healthy member. The materials used in the manufacturing of prostheses nor always obey to a technical scientific criteria, because, if by one way it meets the criteria of resistance, by the other, it brings serious problems mainly due to excess of weight. This causes to the user various disorders due to lack of conformity. That problem was addressed with the creation of a hybrid composite material for the manufacture of cartridges of prostheses. Using the Reader Fitter and OrtoCAD, the new composite material, which aggregates the mechanical properties of strength and rigidity on important parameters such as low weight and low cost, it can be defined in its better way. Besides, it brings a reduction of up steps in the current processes of manufacturing or even the feasibility of using new processes, in the industries, in order to obtain the prostheses. In this sense, the hybridization of the composite with the combination of natural and synthetic fibers can be a viable solution to the challenges offered above

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years there has been a significant growth in technologies that modify implant surfaces, reducing healing time and allowing their successful use in areas with low bone density. One of the most widely used techniques is plasma nitration, applied with excellent results in titanium and its alloys, with greater frequency in the manufacture of hip, ankle and shoulder implants. However, its use in dental implants is very limited due to high process temperatures (between 700 C o and 800 C o ), resulting in distortions in these geometrically complex and highly precise components. The aim of the present study is to assess osseointegration and mechanical strength of grade II nitrided titanium samples, through configuration of hollow cathode discharge. Moreover, new formulations are proposed to determine the optimum structural topology of the dental implant under study, in order to perfect its shape, make it efficient, competitive and with high definition. In the nitriding process, the samples were treated at a temperature of 450 C o and pressure of 150 Pa , during 1 hour of treatment. This condition was selected because it obtains the best wettability results in previous studies, where different pressure, temperature and time conditions were systematized. The samples were characterized by X-ray diffraction, scanning electron microscope, roughness, microhardness and wettability. Biomechanical fatigue tests were then conducted. Finally, a formulation using the three dimensional structural topology optimization method was proposed, in conjunction with an hadaptive refinement process. The results showed that plasma nitriding, using the hollow cathode discharge technique, caused changes in the surface texture of test specimens, increases surface roughness, wettability and microhardness when compared to the untreated sample. In the biomechanical fatigue test, the treated implant showed no flaws, after five million cycles, at a maximum fatigue load of 84.46 N. The results of the topological optimization process showed well-defined optimized layouts of the dental implant, with a clear distribution of material and a defined edge

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cerebral Vascular Accident (CVA) is the leading cause of motor disability in adults and elderly and that is why it still needs effective interventions that contribute to motor recovery. Objective: This study was aimed to evaluate the performance of stroke patients in chronic stage using a virtual reality game. Method: 20 patients (10 with injury to the left and 10 to the right side), right-handed, average age 50.6 ± 9.2 years, and 20 healthy subjects with average age of 50.9 ± 8.8, also right-handed participated. The patients had a motor (Fugl-Meyer) and muscle tone assessment (Ashworth). All participants made a kinematic evaluation of the drinking water activity and then underwent training with the table tennis game on XBOX 360 Kinect®, 2 sets of 10 attempts for 45 seconds, 15 minutes rest between sets, giving a total of 30 minutes session. After training the subjects underwent another kinematic evaluation. The patients trained with the right and left hemiparect upper limb and the healthy ones with the right and left upper limb. Data were analyzed by ANOVA, t Student test and Pearson correlation. Results: There was significant difference in the number of hits between the patients and healthy groups, in which patients had a lower performance in all the attempts (p = 0.008), this performance was related to a higher level of spasticity (r = - 0.44, p = 0.04) and greater motor impairment (r = 0.59, p = 0.001). After training, patients with left hemiparesis had improved shoulder and elbow angles during the activity of drinking water, approaching the pattern of motion of the left arm of healthy subjects (p < 0.05), especially when returning the glass to the table, and patients with right hemiparesis did not obtain improved pattern of movement (p > 0.05). Conclusion: The stroke patients improved their performance over the game attempts, however, only patients with left hemiparesis were able to increase the angle of the shoulder and elbow during the functional activity execution, better responding to virtual reality game, which should be taken into consideration in motor rehabilitation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior